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Outline

The Markovian time evolution of the entropy production
(EP) rate is studied as a measure of irreversibility
generated in a bipartite quantum system consisting of two
coupled bosonic modes immersed in a common thermal
environment. The dynamics of the system is described in
the framework of the formalism of the theory of open
quantum systems based on completely positive quantum
dynamical semigroups, for initial two-mode STS, SVS, TS
and CS. We show that the rate of the EP of the initial state
and nonequilibrium stationary state, and the time evolution
of the rate of EP, strongly depend on the parameters of the
initial Gaussian state (squeezing parameter and average
thermal photon numbers), frequencies of modes,
parameters characterising the thermal environment
(temperature and dissipation coefficient), and strength of
coupling between the modes. We provide a comparison of
the behaviour of EP rate and Rényi-2 mutual information in
the system. 2 / 22



Entropy production

Entropy production (EP) is a basic concept in
nonequilibrium classical and quantum thermodynamics. It
is intimately related to the second law of thermodynamics,
which enables identifying and quantifying the irreversibility
of physical processes, expressed by the generation of
entropy and the dissipation of heat into the surrounding
environment of the systems.
According to the second law of thermodynamics, entropy
change ∆S of the state of a system that exchanges energy
during its interaction with a thermal environment at
temperature T has a lower bound:

∆S ≥
∫
δQ
T
, (1)

where δQ is the infinitesimal heat absorbed by the system.
The strict inequality characterises an irreversible process
for which energy is dissipated into the environment in the
form of heat.
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Entropy production

Besides the entropy that flows from the s. into the
reservoir, some additional entropy may be intrinsically
generated by the process within the s., called EP. From the
second law of thermodynamics, it follows that EP is always
non-negative; it only has a zero value when the s. is in
thermal equilibrium with its reservoir and it can
consequently be used as a measure of the degree of
irreversibility of physical processes and to characterise a
broad range of nonequilibrium phenomena; it is def. by

Σ ≡ ∆S −
∫
δQ
T
≥ 0,

dS
dt

= Π(t)− Φ(t), (2)

where Π(t) denotes the irreversible EP rate, and Φ(t) the
entropy flux from the s. into the environment. When the s.
reaches a stationary state, these two quantities take strictly
positive and equal values, while thermal equilibrium is
reached only when both are zero.
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Master Equation for Two Bosonic Modes Interacting
with the Environment

Markovian Gorini–Kossakowski–Sudarshan–Lindblad
master equation for density operator ρ(t):

dρ(t)
dt

= − i
~

[H, ρ(t)] +
1
2~
∑

j

(2Bjρ(t)B†j − {ρ(t),B†j Bj}+). (3)

The Hamiltonian of two nonresonant linearly coupled in
coordinates bosonic modes

H =
~ω1

2
(x2 + p2

x ) +
~ω2

2
(y2 + P2

y ) + qxy , (4)

where x , y ,px ,py are the dimensionless position and
momentum operators of the two modes, respectively, and
q is the coupling parameter; R = {x ,px , y ,py}T, vector of
canonically conjugated quadrature operators for the two
bosonic modes; σ, 4× 4 bimodal covariance matrix
with elements :

σij = Tr[(RiRj + RjRi)ρ], i , j = 1, . . . ,4. (5) 5 / 22



Covariance matrix

Lyapunov equation:
dσ(t)

dt
= Aσ(t) + σ(t)AT + D, (6)

A =


−λ ω1 0 0
−ω1 −λ −q 0

0 0 −λ ω2
−q 0 −ω2 −λ

 , (7)

where A denotes the drift matrix, D is the diffusion matrix,
and λ is the dissipation rate (we set ~ = 1):

D = 2 diag{λ coth
ω1

2kBT
, λ coth

ω1

2kBT
, λ coth

ω2

2kBT
, λ coth

ω2

2kBT
}.

(8)
The time-dependent solution of Eq. (6) is

σ(t) = M(t)[σ(0)− σs]MT(t) + σs, (9)

M(t) ≡ exp(At), Aσs + σsAT = −D. (10)

q = 0→ asympt. Gibbs state (thermal equil.) with env.
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Wigner EP rate

The dynamics of the open quantum systems given by the
master equation (3) can be reformulated in terms of the
Fokker-Plank equation for Wigner distribution function,
therefore it is appropriate to describe the evolution of EP
by using a corresponding approach based on the phase
space formalism. Consequently, we introduce the Wigner
EP rate, given by

Π(t) ≡ −∂tK (W (t)||Ws), (11)

where K (W (t)||Ws) is Wigner relative entropy, W (t) is the
time-dependent Wigner function and Ws is Wigner function
for the stationary state.
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We introduce the symplectic matrix representing time
reversal operator
E = diag(1,−1,1,−1). Then, dynamic variables can be
divided according to their time symmetry. Drift matrix A (7)
is split into an irreversible component Airr, given by
Airr = 1

2

(
A + EAET

)
, and a reversible one

Arev = 1
2

(
A− EAET

)
:

Airr = diag (−λ,−λ,−λ,−λ) , (12)

Arev =


0 ω1 0 0
−ω1 0 −q 0

0 0 0 ω2
−q 0 −ω2 0

 . (13)

8 / 22



EP rate

The analytical expression of EP rate Π(t) as a function of
drift matrix A, diffusion matrix D, and covariance matrix σ
is the following:

Π(t) =
1
2

Tr[σ−1(t)D] + 2Tr[Airr] + 2Tr[(Airr)TD−1Airrσ(t)].

(14)
In particular, when the system reaches nonequilibrium
stationary state σs, expression (14) becomes

Πs = Tr[Airr] + 2Tr[(Airr)TD−1Airrσs]. (15)
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Initial state - STS

We consider an initial squeezed thermal state with
covariance matrix

σ0 =


a 0 c 0
0 a 0 −c
c 0 b 0
0 −c 0 b

 , (16)

where

a = 2n1 cosh2 r + 2n2 sinh2 r + cosh 2r ,
b = 2n1 sinh2 r + 2n2 cosh2 r + cosh 2r ,
c = (n1 + n2 + 1) sinh 2r .

(17)

n1 and n2 are the average thermal photon numbers of the
modes, and r is the squeezing of the initial state.
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Gaussian Rényi-2 Mutual Information (1)

Gaussian state ρ of a two-mode continuous variable system
can be described by positive Wigner distribution in phase space

Wρ(ξ) =
1

π2
√

detσ
exp

(
−ξᵀσ−1ξ

)
, (18)

where ξ ∈ R4 and σ is the covariance matrix completely
characterising the Gaussian state.
Entropy is usually quantified by using von Neumann entropy.
An alternative quantifier of the quantum information contained
in a Gaussian state is Shannon entropy of Wigner distribution
(18):

Sσ(ρ) =
1
2

ln(det σ) + 2(1 + lnπ). (19)

In addition, Rényi-α entropies were introduced in quantum
information theory that form a family of additive entropies
related to derivatives of the free energy with respect to
temperature, defined by:

Sα(ρ) = (1− α)−1 ln(Tr ρα), α ≥ 0. (20)
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Gaussian Rényi-2 Mutual Information (2)

Rényi entropies represent useful instruments for studying
quantum correlations in multipartite systems. Up to an additive
constant, expression (19) coincides with the Rényi entropy of
order 2, given by Eq. (20) for α = 2. For α = 1 Rényi entropy
becomes von Neumann entropy S1(ρ) = −Tr(ρ ln ρ), and for
α = 2 from expression (20) we obtain S2(ρ) = − ln(Tr ρ2),
which is the opposite of the logarithm of purity of the state ρ.
Using Eq. (18), we obtain the following expression of the
Rényi-2 entropy for Gaussian states:

S2(ρ) =
1
2

ln(detσ). (21)

For pure states (det σ = 1) S2(ρ) = 0 and it increases with the
mixedness of the state. By comparing the expressions in
Eqs (19) and (21), we see that Rényi and Shannon entropy
indeed coincide, up to an additional constant. Rényi-2 entropy
has all the required properties to be a legitimate measure of
entropy, including strong subadditivity.
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Gaussian Rényi-2 Mutual Information (3)

For any bipartite Gaussian state ρ of a system with subsystems
A and B, Gaussian Rényi-2 mutual information is defined by

I (ρA:B) = S2 (ρA) + S2 (ρB)− S2 (ρ) , (22)

where ρA and ρB are the two marginals of ρ. Two-mode
covariance matrix σ is written in block form that contains
covariance matrices of the parties:

σ =

(
σA σC
σT

C σB

)
, (23)

the Gaussian Rényi-2 mutual information has expression

I (ρA:B) =
1
2

ln
(

detσA detσB

detσ

)
. (24)

I (ρA:B) ≥ 0 and it represents a measure of the total quadrature
correlations between the parties A and B in the state ρ.

13 / 22



Gaussian Rényi-2 Mutual Information (4)

The analytical time-dependent expression of Rényi-2 mutual
information for the considered system is very complicated;
therefore, we only report its expression for the stationary state
in the particular case of resonant modes:

Is =
1
2

ln

(λ2 + ω(ω − q))(λ2 + ω(ω + q))(q4 + 8q2(λ2 − ω2) + 16(λ2 + ω2)2)

4(q2(λ2 − ω2) + 2(λ2 + ω2)2)2 .

This does not depend on temperature.
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Results

Figure: Π(t) and I(t)
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Results

Figure: Π(t) and I(t)
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Results

Figure: Π(t) and I(t)
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Results

Figure: Π(t) and I(t)
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Results

Figure: Π and I
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Results

Figure: Π and I
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Conclusions

In order to extend the present analysis, we plan to take into
consideration the role played by the squeezing in the
thermal reservoir, representing a quantum thermodynamic
resource, and perform a similar investigation of the
dynamics of entropy production rate in a bipartite system
interacting with a squeezed thermal reservoir which
manifests additional thermodynamic features compared to
the thermal reservoir.
Obtained results emphasise the closed relation between
irreversibility that quantifies the difference from reversible
quasistatic transformations generated by the dynamical
and stationary process, and correlations existing in the
considered bipartite system.
Tatiana Mihaescu, Aurelian Isar, Entropy, 24, 696 (2022)
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Thank You!
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