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Inflation

• The inflation theory proposes a period
of extremely rapid (exponential) 
expansion of the universe during the an 
early stage of evolution of the universe. 

• The inflation theory predicts that during

inflation (it takes about 10−34 s) radius of the

universe increased, at least 𝑒60 ≈ 1026 times.

• Although inflationary cosmology has successfully complemented the Standard Model, the process 
of inflation, in particular its origin, is still largely unknown.

• Recent years brought us a lot of evidence from WMAP and Planck observations of the CMB

• The most important way to test inflationary cosmological models is to compare the computed 
and measured values of the observational parameters.



Standard single field inflation

• The Friedmann-Robertson-Walker (FRW) metric

• The Friedmann equations

• The simplest model of inflation - standard single scalar field inflation f – inflaton

• Energy density and pressure 

• A condition for inflation (from the Friedmann equations)

2
2 2 2 2 2 2

2
( )

1

dr
ds c dt a t r d

kr

 
= − +  

− 
( )

( )
( )

a t
H t

a t
= - the Hubble

  expansion rate

( )a t - scale factor

2
2

2

8

3

G kc
H

a


= −

4 41

16
S gRd x g d x

G
= − − + − 

2
1

2
( ) 0 0 0

d d a
aH a p

dt dt
−  =  + 

- the spatial curvature 

  parameter
k

2

2

4 3

3

a G p
H H

a c




 
+ = = − + 

 

1 1
( ) ( )

2 2
V p V f f f f= + = − 3 ( )H p = − +



Slow-roll parameters

• The slow-roll parameters

• The horizon-flow parameters

• Example: canonical scalar field 
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The constant-roll inflation

• Trivial  solution

• Nontrivial solutions

1 2

1

2
  = −

const. =

1( ) tan( )H t t


 


= − + 2 ( ) cot( )H t t


 


= +
3( ) tanh( )H t t


 


= + 4 ( ) coth( )H t t


 


= +

1 2
( )

sin ( )
t

t




 
=

+

2

2 ( ) 2 cot ( )t t   = +

1
( ) log cos( )N t t C 


= + +

1 2
( )

cos ( )
t

t




 
=

+

2

2 ( ) 2 tan ( )t t   = +

1
( ) logsin( )N t t C 


= + +

1 2
( )

sinh ( )
t

t




 
= −

+

2

2 ( ) 2 coth ( )t t   = − +

1
( ) log cosh( )N t t C 


= + +

1 2
( )

cosh ( )
t

t




 
=

+

2

2 ( ) 2 tanh ( )t t   = − +

The parameters 𝜀𝑖 cannot

be simultaneously positive, 

the inflation stage never ends!
0 0  0 

The solutions which provide a consistent inflationary model.

1
( )H t

t c
=

+
1 2const 0 = =

2 0H HH+ =



The constant-roll inflation

• All solutions H lead to the same function ε1(N) and ε2(N).

• The observational parameters

• The observational constraints from Planck 2018

• The better agreement is achieved for 
negative and small values of the parameter 𝜂.
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Braneworld cosmology

• Braneworld universe is based on the scenario in which matter is confined on a brane moving in the
higher dimensional bulk with only gravity allowed to propagate in the bulk.

• One of the simplest models - Randall-Sundrum (RS) model was originally proposed to solve the
hierarchy problem (1999).

• Later it was realized that this model, as well as any similar braneworld model, may have interesting
cosmological implications.

• RS model - observer reside on the brane with negative 
tension at 𝑦=𝑙, distance to the 2nd brane corresponds to 
the Netwonian gravitational constant.

• RSII model – observer is placed on the positive tension 
brane at 𝑦 = 0 , the 2nd brane is pushed to infinity.
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Randall-Sundrum II (RSII) model

• The action for the brane world

• Assuming the geometry of the universe to be described by a five-dimensional FLRW metric 

• The usual Friedmann equations are modified so the model has predictions different from the 
standard cosmology
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Tachyon field
• Traditionally, the word tachyon was used to describe a hypothetical particle which

propagates faster than light (Sommerfeld 1904).

• In modern physics this meaning has been changed

• The effective tachyonic field theory  was proposed by A. Sen

• String theory: states of quantum fields with imaginary mass

(i.e. negative mass squared)

• It was believed: such fields permitted propagation faster than light

• However it was realized that the imaginary mass creates an instability and tachyons
spontaneously decay through the process known as tachyon condensation

• No classical interpretation of the ”imaginary mass”

• The instability: The potential of the tachyonic field is initially at a local maximum rather
than a local minimum (like a ball at the top of a hill)

• A small perturbation - forces the field to roll down towards the local minimum.

• Quanta are not tachyon any more, but rather an ”ordinary” particle with a positive
mass.



Tachyon field

• Tachyon Lagrangian (homogenius and isotropic case)

• Tachyon potentia

• The tachyon field can be treated as a fluid with

• Friedmann equation
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The constant-roll inflation with a tachyon field

• RSII cosmology

• Hamilton-Jacobi formalism
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The observational parameters

• The inflation parameters in the second order in the slow-roll 
parameters

• A better agreement of analytical and observational results is 
evident for higher values of N. 

• The influence of the second order in the slow-roll parameters 
is insignificant.
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The attractor behavior

The attractor behavior of the solution could be investigated:

• analytically: Substituting   

in the Hamilton-Jacobi equation, one could obtain an evolution equation 
for the perturbation. If the perturbation decays the solution is assumed to 
be stable.

• numerically: the attractor behavior is considered by plotting the phase 
space diagram. 

• The reconstructed potentials

• The results displayed in phase space show that there is a curve which 
attract most trajectories obtained for several initial conditions 

 which provide that the inflationary trajectories are  attractors.
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Constant-roll inflation in RSII holographic model

• The scenario in which the brane (with an effective tachyon field) is located at the boundary of the AdS5 space 
is referred as the holographic braneworld.

• The effective four-dimensional Einstein equations on the holographic boundary of AdS5 yields a modified 
Friedmann equations  

where h is a dimensionless Hubble expansion rate and the fundamental coupling is related to the AdS5 
curvature radius

• From the general condition for constant-roll inflation using the Hamilton-Jacobi formalism one obtains 

• The expressions obtained in the CRI in holography differ from those in CRI in the standard cosmology!
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Constant-roll inflation in RSII holographic model
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Conclusions
• We have studied the constant-roll inflation with tachyon field in RSII Cosmology, with constant slow-roll

parameter η, and for fixed η.

• Its definition leads to differential equation for the Hubble expansion rate, which have the exact (4+1)
solutions.

• We found Hubble slow-roll parameters (ε1, ε2) as a function of parameter η for all (4 nontrival) solutions H(θ).

• It was shown show that three of four solutions H(θ) provide a consistent inflationary model. Futhermore, and
as very important, all solutions lead to the same function ε1(N) and ε2(N).

• We calculated the values of ns and r and compared it with the latest Planck results.By comparing those
values with constraints from observation data we estimate the parameter η. The better agreement is
achieved for negative and small value of the parameter η.

• In addition, for standard and RSII cosmology we have calculated inflation parameters in the second order in
the slow-roll parameters. No significant difference was obtained for the parameters in these two cases.

• A correct attractor behaviour was found.

• The model of CRI in holographic cosmology gives a lower value for number of e-fold and closer to typical 
value N=60 then the tachyon CRI in standard cosmology.



References
1. M. Stojanovic, N. Bilic, D. D. Dimitrijevic, G. Djordjevic, M. Milosevic, Tachyon constant-roll inflation in Randall-Sundrum II 

cosmology, [arXiv:2306.02423v2 [gr-qc]] (accepted for publication in IJMPA).

2. D. A. Steer and F. Vernizzi, Phys. Rev. D 70, 043527 (2004) [arXiv:hep-th/0310139 [hep-th]].

3. H. Motohashi, A. A. Starobinsky and J. Yokoyama, JCAP 09, 018 (2015) [arXiv:1411.5021 [astro-ph.CO]].

4. L. Anguelova, P. Suranyi and L. C. R. Wijewardhana, JCAP 02, 004 (2018) [arXiv:1710.06989 [hep-th]].

5. Q. Gao, Y. Gong and Q. Fei, JCAP 05, 005 (2018) [arXiv:1801.09208 [gr-qc]].

6. N. Bilic, S. Domazet and G. Djordjevic, Class. Quant. Grav. 34 (2017) no.16, 165006 [arXiv:1704.01072 [gr-qc]].

7. A. Mohammadi, K. Saaidi and T. Golanbari, Phys. Rev. D 97 (2018) no.8, 083006 [arXiv:1801.03487 [hep-ph]].

8. L. Randall and R. Sundrum,Phys. Rev. Lett. 83, 4690-4693 (1999) [arXiv:hepth/9906064 [hep-th]].

9. N. Bilic, D. Dimitrijevic, G. Djordjevic and M. Milosevic, Int. J. Mod. Phys. A 32, no.05, 1750039 (2017) [arXiv:1607.04524 [gr-qc]].

10. A. Mohammadi, T. Golanbari, S. Nasri and K. Saaidi, Phys. Rev. D 101, no.12, 123537(2020) [arXiv:2004.12137 [gr-qc]].

11. Y. Akrami et al. [Planck], Astron. Astrophys. 641, A10 (2020) [arXiv:1807.06211 [astro-ph.CO]].

12. M. Stojanovic, N. Bilic, D. D. Dimitrijevic, G. Djordjevic, M. Milosevic, Constant-roll inflation with tachyon field in the holographic 
cosmology (in progress)



THANK YOU FOR YOUR ATTENTION!


	Slide 1: TACHYON CONSTANT-ROLL INFLATION  IN RSII COSMOLOGY
	Slide 2: Outline
	Slide 3: Inflation
	Slide 4: Standard single field inflation
	Slide 5: Slow-roll parameters
	Slide 6: The constant-roll inflation
	Slide 7: The constant-roll inflation
	Slide 8: Braneworld cosmology
	Slide 9: Randall-Sundrum II (RSII) model
	Slide 10: Tachyon field
	Slide 11: Tachyon field
	Slide 12: The constant-roll inflation with a tachyon field
	Slide 13: The observational parameters
	Slide 14: The attractor behavior
	Slide 15: Constant-roll inflation in RSII holographic model
	Slide 16: Constant-roll inflation in RSII holographic model
	Slide 17: Conclusions
	Slide 18: References
	Slide 19: THANK YOU FOR YOUR ATTENTION!

